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The Linux kernel: All you (n)ever wanted

RDS protocol
CVE-2010-3904

Perf events
CVE-2013-2094

/proc/pid/mem
CVE-2012-0056

BPF
CVE-2010-4158
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How popular are those features?

Large attack surface for no reason?
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Research questions (1/2)

 Q1: Is it possible to precisely define the 
kernel attack surface? How can it be 

measured?
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Research questions (2/2)

 Q2: Can we develop kernel protection 
mechanisms whose attack surface 

reduction is quantifiable? To what extent 
can these mechanisms be applied to 

Linux in practice?
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This talk

P1: Kernel Attack Surface Quantification 
(NDSS'13)
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This talk

P1: Kernel Attack Surface Quantification 
(NDSS'13)

P2: Compile-time Kernel Tailoring
(HotDep'13, NDSS'13)

P3: Run-time Kernel Trimming
(Eurosec'11, DIMVA'14, CCS'14)
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 Measuring
Kernel Attack Surface

 [NDSS'13] Anil Kurmus, Reinhard Tartler, Daniela Dorneanu, Bernhard Heinloth, Valentin 
Rothberg, Andreas Ruprecht, Wolfgang Schröder-Preikschat, Daniel Lohmann and Rüdiger 
Kapitza. "Attack Surface Metrics and Automated Compile-Time OS Kernel Tailoring." In: 
Proceedings of the 20th Network and Distributed System Security Symposium. 2013.

https://www.ibr.cs.tu-bs.de/users/kurmus/papers/kurmus-ndss13.pdf

 [DIMVA'14] Anil Kurmus, Sergej Dechand, and Ruediger Kapitza. "Quantifiable Run-time 
Kernel Attack Surface Reduction". In: Proceedings of the 10th International Conference on 
Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA’14). 2014.

https://www.ibr.cs.tu-bs.de/users/kurmus/papers/kurmus-dimva14.pdf

https://www.ibr.cs.tu-bs.de/users/kurmus/papers/kurmus-ndss13.pdf
https://www.ibr.cs.tu-bs.de/users/kurmus/papers/kurmus-dimva14.pdf
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Existing approaches and limitations

 Typically in OS research: measure TCB size in source lines of code.
– Fiasco 15K SLOC; Minix 3 4K SLOC; Flicker 250 SLOC
– Linux 3.0 10M SLOC;

 However: 
– Source files that are not compiled? Configuration-dependent code?
– Loadable kernel modules (LKMs)? On-demand loadable kernel modules?
– Code that is not reachable from the system call interface? Initialization code?
– Code that is only reachable by privileged processes?
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General Idea

 Attack surface ~= attacker-reachable code
– Idea: use reachability over kernel call graph
– Assumptions on the attacker and kernel? (security model)

 Measurements: code quality metrics
– SLOCs, CVEs, ...
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Obtaining the attack surface: an example
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Attack surface measurement: AS1 with SLOC metric
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Attack surface measurements: summary

Program source
 and configuration

Entry and barrier
functions

Call graph:
functions and calls

Attack surface

Attack surface
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Attack surface
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Σ = 370 SLOC



© 2014 IBM Corporation33

Attack surface measurements: summary

Security
model

Program source
 and configuration

Entry and barrier
functions

Call graph:
functions and calls

Attack surface

Attack surface
measurement

Attack surface
metric

Σ = 370 SLOC

What security model?
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partial a.s.
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Attacker controls 
unprivileged process
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GenSec Linux Kernel Security Model
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GenSec Linux Kernel Security Model

 Entry functions:
– all

 Barrier functions:
– none

 Overestimates attack surface 
– attacker is privileged?
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Compile-time Kernel Tailoring

 [NDSS'13] Anil Kurmus, Reinhard Tartler, Daniela Dorneanu, Bernhard Heinloth, Valentin 
Rothberg, Andreas Ruprecht, Wolfgang Schröder-Preikschat, Daniel Lohmann and Rüdiger 
Kapitza. "Attack Surface Metrics and Automated Compile-Time OS Kernel Tailoring." In: 
Proceedings of the 20th Network and Distributed System Security Symposium. 2013.

https://www.ibr.cs.tu-bs.de/users/kurmus/papers/kurmus-ndss13.pdf

https://www.ibr.cs.tu-bs.de/users/kurmus/papers/kurmus-ndss13.pdf
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Making the kernel smaller

~ 5000 features
(ubuntu 12.04)

~ 500 features
(realistic use case)
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Making the kernel smaller

Remove unnecessary features from the kernel 
by leveraging built-in configurability

~ 5000 features
(ubuntu 12.04)

~ 500 features
(realistic use case)
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Make (menuconfig) your way to a smaller kernel

Now with
~5K features 

to choose from!
(on x86)
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Don't take my word for it
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Don't take my word for it

“many of the support infrastructure questions are very 
opaque, and I have no idea which of them any 
particular distribution actually depends on.”
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Automatic Kernel-Configuration Tailoring
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Automatic Kernel-Configuration Tailoring

Distribution kernel
and use case
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Resulting kernel
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Resulting kernel

 How much attack surface reduction?
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Selected results of the evaluation

 Typical server use case: LAMP
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Results: tracing

 Httperf benchmark triggers new features
– Stabilizes at 495 features

 Skipfish: high coverage of the web application
– Goes beyond real-world workload

Tracing at “feature-granularity” converges quickly 

No new 
features
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Results: attack surface reduction
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Run-time Kernel Trimming
 [DIMVA'14] Anil Kurmus, Sergej Dechand, and Ruediger Kapitza. "Quantifiable Run-time 

Kernel Attack Surface Reduction". In: Proceedings of the 10th International Conference on 
Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA’14). 2014.

https://www.ibr.cs.tu-bs.de/users/kurmus/papers/kurmus-dimva14.pdf

 [CCS'14] Anil Kurmus, and Robby Zippel. "A Tale of Two Kernels: Towards Ending 
Kernel Hardening Wars with Split Kernel". In: Proceedings of the 2014 ACM Conference 
on Computer and Communications Security (accepted for publication). 2014.

https://www.ibr.cs.tu-bs.de/users/kurmus/papers/kurmus-dimva14.pdf
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Same idea, more attack surface reduction!

 The promises of run-time attack surface reduction:

 More granular
– E.g., function-level instead of configuration-level

 Application-specific
– Different application may exercise different kernel functionality

 Challenges:
– Performance overhead of run-time instrumentation
– False positives
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The false positive challenge
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The false positive challenge
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Run-time kernel attack surface reduction
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Run-time kernel attack surface reduction

Performance
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Run-time kernel attack surface reduction

Performance False positives
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Phase 1: Pre-learning

 Heuristic approach to improve performance

 Functions hit with frequency above a (dynamically computed) threshold are ignored

 Example:

Pre-learning reduces performance overhead
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Phase 3: Analysis

 Group functions together to reduce false positives

 4 different modes
– No grouping

– File grouping

– Directory grouping

– Cluster grouping
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Phase 4: Enforcement

 Can't terminate process
– False positives
– Shared kernel state

 Two choices:
– Logging (IDS)
– Hardened mode enforcement via split kernel [CCS'14]
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Split Kernel overview

 Build kernel with and without hardening

 Chose at run-time whether to run in 
hardened mode

 Performance impact of hardening greatly 
reduced
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Selected results of the evaluation

 Real-world workload on RHEL 6 development server
– Total observation time: 403 days
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Attack surface reduction vs. convergence rate
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Attack surface reduction vs. convergence rate

better
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Attack surface reduction vs. convergence rate
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Conclusion 
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Conclusion

 The kernel attack surface can be quantified

 This can be used to evaluate the effectiveness of kernel attack surface reduction

 Kernel attack surface reduction is effective in preventing kernel exploits:
– Compile-time Tailoring

• Prevents 285 out of 485 CVEs.
• For well-defined use cases (e.g., embedded systems)

– Run-time Trimming
• Prevents up to 184 out of 262 CVEs.
• More flexible, higher ASR but slower convergence rate

 Both mechanism aim to be practical
– no significant overhead
– non-intrusive
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