
© 2014 IBM Corporation1

BalCCon 2k14

September 6th, 2014

Anil Kurmus
kur@zurich.ibm.com ak@kernel.build

twitter: @kurmus
Systems security researcher at IBM Research – Zurich

The Linux Kernel's Attack Surface
(and how we can reduce it)

mailto:kur@zurich.ibm.com
mailto:ak@kernel.build

© 2014 IBM Corporation2

© 2014 IBM Corporation3

The Linux kernel: All you (n)ever wanted

© 2014 IBM Corporation4

The Linux kernel: All you (n)ever wanted

RDS protocol

© 2014 IBM Corporation5

The Linux kernel: All you (n)ever wanted

RDS protocol

Perf events

© 2014 IBM Corporation6

The Linux kernel: All you (n)ever wanted

RDS protocol

Perf events

/proc/pid/mem

© 2014 IBM Corporation7

The Linux kernel: All you (n)ever wanted

RDS protocol

Perf events

/proc/pid/mem

Berkley Packet
Filter (BPF)

© 2014 IBM Corporation8

The Linux kernel: All you (n)ever wanted

RDS protocol
CVE-2010-3904

Perf events
CVE-2013-2094

/proc/pid/mem
CVE-2012-0056

BPF
CVE-2010-4158

© 2014 IBM Corporation9

How popular are those features?

© 2014 IBM Corporation10

How popular are those features?

© 2014 IBM Corporation11

How popular are those features?

© 2014 IBM Corporation12

How popular are those features?

© 2014 IBM Corporation13

How popular are those features?

© 2014 IBM Corporation14

How popular are those features?

Large attack surface for no reason?

© 2014 IBM Corporation15

Research questions (1/2)

 Q1: Is it possible to precisely define the
kernel attack surface? How can it be

measured?

© 2014 IBM Corporation16

Research questions (2/2)

 Q2: Can we develop kernel protection
mechanisms whose attack surface

reduction is quantifiable? To what extent
can these mechanisms be applied to

Linux in practice?

© 2014 IBM Corporation17

This talk

P1: Kernel Attack Surface Quantification
(NDSS'13)

© 2014 IBM Corporation18

This talk

P1: Kernel Attack Surface Quantification
(NDSS'13)

P2: Compile-time Kernel Tailoring
(HotDep'13, NDSS'13)

© 2014 IBM Corporation19

This talk

P1: Kernel Attack Surface Quantification
(NDSS'13)

P2: Compile-time Kernel Tailoring
(HotDep'13, NDSS'13)

P3: Run-time Kernel Trimming
(Eurosec'11, DIMVA'14, CCS'14)

© 2014 IBM Corporation20

 Measuring
Kernel Attack Surface

 [NDSS'13] Anil Kurmus, Reinhard Tartler, Daniela Dorneanu, Bernhard Heinloth, Valentin
Rothberg, Andreas Ruprecht, Wolfgang Schröder-Preikschat, Daniel Lohmann and Rüdiger
Kapitza. "Attack Surface Metrics and Automated Compile-Time OS Kernel Tailoring." In:
Proceedings of the 20th Network and Distributed System Security Symposium. 2013.

https://www.ibr.cs.tu-bs.de/users/kurmus/papers/kurmus-ndss13.pdf

 [DIMVA'14] Anil Kurmus, Sergej Dechand, and Ruediger Kapitza. "Quantifiable Run-time
Kernel Attack Surface Reduction". In: Proceedings of the 10th International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA’14). 2014.

https://www.ibr.cs.tu-bs.de/users/kurmus/papers/kurmus-dimva14.pdf

https://www.ibr.cs.tu-bs.de/users/kurmus/papers/kurmus-ndss13.pdf
https://www.ibr.cs.tu-bs.de/users/kurmus/papers/kurmus-dimva14.pdf

© 2014 IBM Corporation21

Existing approaches and limitations

 Typically in OS research: measure TCB size in source lines of code.
– Fiasco 15K SLOC; Minix 3 4K SLOC; Flicker 250 SLOC
– Linux 3.0 10M SLOC;

 However:
– Source files that are not compiled? Configuration-dependent code?
– Loadable kernel modules (LKMs)? On-demand loadable kernel modules?
– Code that is not reachable from the system call interface? Initialization code?
– Code that is only reachable by privileged processes?

© 2014 IBM Corporation22

General Idea

 Attack surface ~= attacker-reachable code
– Idea: use reachability over kernel call graph
– Assumptions on the attacker and kernel? (security model)

 Measurements: code quality metrics
– SLOCs, CVEs, ...

© 2014 IBM Corporation23

Obtaining the attack surface: an example

© 2014 IBM Corporation24

Obtaining the attack surface: an example

FunctionsFunctions

© 2014 IBM Corporation25

Obtaining the attack surface: an example

Functions

CallsCalls

Functions

© 2014 IBM Corporation26

Obtaining the attack surface: an example

© 2014 IBM Corporation27

Obtaining the attack surface: an example

Functions
Entry

functions

© 2014 IBM Corporation28

Obtaining the attack surface: an example

Functions
Entry

functions

Entry
points
Barrier

functions

© 2014 IBM Corporation29

Obtaining the attack surface: an example

X

X

X

© 2014 IBM Corporation30

Obtaining the attack surface: an example

© 2014 IBM Corporation31

Attack surface measurement: AS1 with SLOC metric

10

20

50

200 50

20

20

Σ = 370 SLOC

© 2014 IBM Corporation32

Attack surface measurements: summary

Program source
 and configuration

Entry and barrier
functions

Call graph:
functions and calls

Attack surface

Attack surface
measurement

Attack surface
metric

Σ = 370 SLOC

© 2014 IBM Corporation33

Attack surface measurements: summary

Security
model

Program source
 and configuration

Entry and barrier
functions

Call graph:
functions and calls

Attack surface

Attack surface
measurement

Attack surface
metric

Σ = 370 SLOC

What security model?

© 2014 IBM Corporation34

System call interface

Hardware interface

Core Kernel LKM

Application
(privileged)

Hardware

Application
(unprivileged)

LKM
(on-demand

loadable)

LKM
(driver)

LKM
(other)

IsolSec Linux Kernel Security Model

attacker entry

partial a.s.

running kernel

Attacker controls
unprivileged process

© 2014 IBM Corporation35

System call interface

Hardware interface

Core Kernel LKM

Application
(privileged)

Hardware

Application
(unprivileged)

LKM
(on-demand

loadable)

LKM
(driver)

LKM
(other)

IsolSec Linux Kernel Security Model

attacker entry

partial a.s.

running kernel

Attacker controls
unprivileged process

Attacker controls
unprivileged process

© 2014 IBM Corporation36

System call interface

Hardware interface

Core Kernel LKM

Application
(privileged)

Hardware

Application
(unprivileged)

LKM
(on-demand

loadable)

LKM
(driver)

LKM
(other)

IsolSec Linux Kernel Security Model

 Entry functions:
– system calls

 Barrier functions:
– Functions calling capable()

attacker entry

partial a.s.

running kernel

Attacker controls
unprivileged process

Attacker controls
unprivileged process

© 2014 IBM Corporation37

System call interface

Hardware interface

Core Kernel LKM

Application
(privileged)

Hardware

Application
(unprivileged)

LKM
(on-demand

loadable)

LKM
(driver)

LKM
(other)

IsolSec Linux Kernel Security Model

 Entry functions:
– system calls

 Barrier functions:
– Functions calling capable()

attacker entry

partial a.s.

running kernel

Drivers and
non-ODL LKMs

are not considered

Drivers and
non-ODL LKMs

are not considered

Attacker controls
unprivileged process

© 2014 IBM Corporation38

System call interface

Hardware interface

Core Kernel LKM

Application
(privileged)

Hardware

Application
(unprivileged)

LKM
(on-demand

loadable)

LKM
(driver)

LKM
(other)

IsolSec Linux Kernel Security Model

 Entry functions:
– system calls

 Barrier functions:
– Functions calling capable()
– Drivers and “other” LKMs

attacker entry

partial a.s.

running kernel

Drivers and
non-ODL LKMs

are not considered

Drivers and
non-ODL LKMs

are not considered

Attacker controls
unprivileged process

© 2014 IBM Corporation39

System call interface

Hardware interface

Core Kernel LKM

Application
(privileged)

Hardware

Application
(unprivileged)

LKM
(on-demand

loadable)

LKM
(driver)

LKM
(other)

IsolSec Linux Kernel Security Model

 Entry functions:
– system calls

 Barrier functions:
– Functions calling capable()
– Drivers and “other” LKMs
– (procfs, sysfs, debugfs)attacker entry

partial a.s.

running kernel

Drivers and
non-ODL LKMs

are not considered

Drivers and
non-ODL LKMs

are not considered

Attacker controls
unprivileged process

© 2014 IBM Corporation40

System call interface

Hardware interface

Core Kernel LKM

Application
(privileged)

Hardware

Application
(unprivileged)

LKM
(on-demand

loadable)

LKM
(driver)

LKM
(other)

IsolSec Linux Kernel Security Model

 Entry functions:
– system calls

 Barrier functions:
– Functions calling capable()
– Drivers and “other” LKMs
– (procfs, sysfs, debugfs)

 Purpose: estimating the attack
surface from an untrusted,
unprivileged process

attacker entry

partial a.s.

running kernel

Drivers and
non-ODL LKMs

are not considered

Drivers and
non-ODL LKMs

are not considered

Attacker controls
unprivileged process

© 2014 IBM Corporation41

System call interface

Hardware interface

Core Kernel LKM

Application
(privileged)

Hardware

Application
(unprivileged)

LKM
(on-demand

loadable)

LKM
(driver)

LKM
(other)

StaticSec Linux Kernel Security Model

attacker entry

partial a.s.

running kernel

LKMs cannot be
On-demand

loaded

Attacker controls
unprivileged process

© 2014 IBM Corporation42

GenSec Linux Kernel Security Model

System call interface

Hardware interface

Core Kernel LKM

LKM
(on-demand

loadable)

Application
(privileged)

Hardware

Application
(unprivileged)

LKM
(driver)

LKM
(other)

attacker entry

attack surface

running kernel

© 2014 IBM Corporation43

GenSec Linux Kernel Security Model

 Entry functions:
– all

 Barrier functions:
– none

System call interface

Hardware interface

Core Kernel LKM

LKM
(on-demand

loadable)

Application
(privileged)

Hardware

Application
(unprivileged)

LKM
(driver)

LKM
(other)

attacker entry

attack surface

running kernel

© 2014 IBM Corporation44

GenSec Linux Kernel Security Model

 Entry functions:
– all

 Barrier functions:
– none

 Overestimates attack surface
– attacker is privileged?
– not all LKMs can be loaded

 Purpose:
– upper bound
– TCB point of view

System call interface

Hardware interface

Core Kernel LKM

LKM
(on-demand

loadable)

Application
(privileged)

Hardware

Application
(unprivileged)

LKM
(driver)

LKM
(other)

attacker entry

attack surface

running kernel

© 2014 IBM Corporation45

Compile-time Kernel Tailoring

 [NDSS'13] Anil Kurmus, Reinhard Tartler, Daniela Dorneanu, Bernhard Heinloth, Valentin
Rothberg, Andreas Ruprecht, Wolfgang Schröder-Preikschat, Daniel Lohmann and Rüdiger
Kapitza. "Attack Surface Metrics and Automated Compile-Time OS Kernel Tailoring." In:
Proceedings of the 20th Network and Distributed System Security Symposium. 2013.

https://www.ibr.cs.tu-bs.de/users/kurmus/papers/kurmus-ndss13.pdf

https://www.ibr.cs.tu-bs.de/users/kurmus/papers/kurmus-ndss13.pdf

© 2014 IBM Corporation46

Making the kernel smaller

~ 5000 features
(ubuntu 12.04)

~ 500 features
(realistic use case)

© 2014 IBM Corporation47

Making the kernel smaller

Remove unnecessary features from the kernel
by leveraging built-in configurability

~ 5000 features
(ubuntu 12.04)

~ 500 features
(realistic use case)

© 2014 IBM Corporation48

Make (menuconfig) your way to a smaller kernel

Now with
~5K features

to choose from!
(on x86)

© 2014 IBM Corporation49

Don't take my word for it

© 2014 IBM Corporation50

Don't take my word for it

“many of the support infrastructure questions are very
opaque, and I have no idea which of them any
particular distribution actually depends on.”

© 2014 IBM Corporation51

Automatic Kernel-Configuration Tailoring

© 2014 IBM Corporation52

Automatic Kernel-Configuration Tailoring

Distribution kernel
and use case

© 2014 IBM Corporation53

Automatic Kernel-Configuration Tailoring

Distribution kernel
and use case

Tailored kernel

© 2014 IBM Corporation54

Automatic Kernel-Configuration Tailoring

Distribution kernel
and use case

Tailored kernel

© 2014 IBM Corporation55

Automatic Kernel-Configuration Tailoring

Distribution kernel
and use case

Tailored kernel

© 2014 IBM Corporation56

Resulting kernel

© 2014 IBM Corporation57

Resulting kernel

© 2014 IBM Corporation58

Resulting kernel

 How much attack surface reduction?

© 2014 IBM Corporation59

Selected results of the evaluation

 Typical server use case: LAMP

© 2014 IBM Corporation60

Results: tracing

 Httperf benchmark triggers new features
– Stabilizes at 495 features

 Skipfish: high coverage of the web application
– Goes beyond real-world workload

Tracing at “feature-granularity” converges quickly

No new
features

© 2014 IBM Corporation61

Results: attack surface reduction

© 2014 IBM Corporation62

Results: attack surface reduction

© 2014 IBM Corporation63

Results: attack surface reduction

85%

© 2014 IBM Corporation64

Results: attack surface reduction

85%

© 2014 IBM Corporation65

Results: attack surface reduction

85%

© 2014 IBM Corporation66

Results: attack surface reduction

85%
82%

© 2014 IBM Corporation67

Results: attack surface reduction

85%
82%

© 2014 IBM Corporation68

Run-time Kernel Trimming
 [DIMVA'14] Anil Kurmus, Sergej Dechand, and Ruediger Kapitza. "Quantifiable Run-time

Kernel Attack Surface Reduction". In: Proceedings of the 10th International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA’14). 2014.

https://www.ibr.cs.tu-bs.de/users/kurmus/papers/kurmus-dimva14.pdf

 [CCS'14] Anil Kurmus, and Robby Zippel. "A Tale of Two Kernels: Towards Ending
Kernel Hardening Wars with Split Kernel". In: Proceedings of the 2014 ACM Conference
on Computer and Communications Security (accepted for publication). 2014.

https://www.ibr.cs.tu-bs.de/users/kurmus/papers/kurmus-dimva14.pdf

© 2014 IBM Corporation69

Same idea, more attack surface reduction!

 The promises of run-time attack surface reduction:

 More granular
– E.g., function-level instead of configuration-level

 Application-specific
– Different application may exercise different kernel functionality

 Challenges:
– Performance overhead of run-time instrumentation
– False positives

© 2014 IBM Corporation70

The false positive challenge

© 2014 IBM Corporation71

The false positive challenge

© 2014 IBM Corporation72

Run-time kernel attack surface reduction

© 2014 IBM Corporation73

Run-time kernel attack surface reduction

Performance

© 2014 IBM Corporation74

Run-time kernel attack surface reduction

Performance False positives

© 2014 IBM Corporation75

Phase 1: Pre-learning

 Heuristic approach to improve performance

 Functions hit with frequency above a (dynamically computed) threshold are ignored

 Example:

Pre-learning reduces performance overhead

© 2014 IBM Corporation76

Phase 3: Analysis

 Group functions together to reduce false positives

 4 different modes
– No grouping

– File grouping

– Directory grouping

– Cluster grouping

© 2014 IBM Corporation77

Phase 4: Enforcement

 Can't terminate process
– False positives
– Shared kernel state

 Two choices:
– Logging (IDS)
– Hardened mode enforcement via split kernel [CCS'14]

© 2014 IBM Corporation78

Split Kernel overview

 Build kernel with and without hardening

 Chose at run-time whether to run in
hardened mode

 Performance impact of hardening greatly
reduced

© 2014 IBM Corporation79

Selected results of the evaluation

 Real-world workload on RHEL 6 development server
– Total observation time: 403 days

© 2014 IBM Corporation80

Attack surface reduction vs. convergence rate

© 2014 IBM Corporation81

Attack surface reduction vs. convergence rate

better

© 2014 IBM Corporation82

Attack surface reduction vs. convergence rate

© 2014 IBM Corporation83

Conclusion

© 2014 IBM Corporation84

Conclusion

 The kernel attack surface can be quantified

 This can be used to evaluate the effectiveness of kernel attack surface reduction

 Kernel attack surface reduction is effective in preventing kernel exploits:
– Compile-time Tailoring

• Prevents 285 out of 485 CVEs.
• For well-defined use cases (e.g., embedded systems)

– Run-time Trimming
• Prevents up to 184 out of 262 CVEs.
• More flexible, higher ASR but slower convergence rate

 Both mechanism aim to be practical
– no significant overhead
– non-intrusive

© 2014 IBM Corporation85

References

 [Eurosec'11] Anil Kurmus, Alessandro Sorniotti, and Ruediger Kapitza. "Attack Surface
Reduction For Commodity OS Kernels". In: Proceedings of the Fourth European
Workshop on System Security. 2011.

 [NDSS'13] Anil Kurmus, Reinhard Tartler, Daniela Dorneanu, Bernhard Heinloth, Valentin
Rothberg, Andreas Ruprecht, Wolfgang Schröder-Preikschat, Daniel Lohmann and Rüdiger
Kapitza. "Attack Surface Metrics and Automated Compile-Time OS Kernel Tailoring." In:
Proceedings of the 20th Network and Distributed System Security Symposium. 2013.

 [DIMVA'14] Anil Kurmus, Sergej Dechand, and Ruediger Kapitza. "Quantifiable Run-time
Kernel Attack Surface Reduction". In: Proceedings of the 10th International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA’14). 2014.

 [CCS'14] Anil Kurmus, and Robby Zippel. "A Tale of Two Kernels: Towards Ending
Kernel Hardening Wars with Split Kernel". In: Proceedings of the 2014 ACM Conference
on Computer and Communications Security (accepted for publication). 2014.

	IBM Presentation Template Full Version
	Slide 2
	page3 (1)
	page3 (2)
	page3 (3)
	page3 (4)
	page3 (5)
	Slide 8
	page5 (1)
	page5 (2)
	page5 (3)
	page5 (4)
	page5 (5)
	page5 (6)
	Slide 15
	Slide 16
	page8 (1)
	page8 (2)
	page8 (3)
	Slide 20
	Slide 21
	Slide 22
	page12 (1)
	page12 (2)
	page12 (3)
	page13 (1)
	page13 (2)
	page13 (3)
	Slide 29
	Slide 30
	Slide 31
	page17 (1)
	page17 (2)
	page18 (1)
	page18 (2)
	page18 (3)
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	page24 (1)
	page24 (2)
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	page30 (1)
	page30 (2)
	page31 (1)
	page31 (2)
	page31 (3)
	page31 (4)
	page31 (5)
	page32 (1)
	page32 (2)
	page32 (3)
	Slide 59
	Slide 60
	page35 (1)
	page35 (2)
	page35 (3)
	page35 (4)
	page35 (5)
	page35 (6)
	page35 (7)
	Slide 68
	Slide 69
	page38 (1)
	page38 (2)
	page39 (1)
	page39 (2)
	page39 (3)
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	page45 (1)
	page45 (2)
	page45 (3)
	Slide 83
	Slide 84
	Slide 85

