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Cryptography
Who are we

Cryptography

The function of cryptographic protocols is to minimize

the amount of trust required.

Ferguson, Schneier, Kohno, �Cryptography Engineering�

This talk will be as applied as possible

i.e. almost no maths involved

but a lot of worse stu�
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Who are we

What you need to know to understand this

What are AES, RSA, SHA1

What is a block-cipher mode

ECB, Counter mode, GCM, CBC

Initialization vector (IV)

and some other practical crypto problems File encryption for untrusted remote �le systems



Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Cryptography
Who are we

Who are we

pCloud

cloud storage done right

yadda, yadda, yadda
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Cryptography
Who are we

Trust?

Eastern-European company with servers in the USA

We don't like the idea to be trusted

We shouldn't be

But we want to be used :)

Requiring too much trust is detrimental in the long run
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Contents of this talk

Encrypted web-based �le transfer service

Peer-to-peer protocol

Filesystem-level encryption
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Cryptography
Who are we

A note on cyphers/algorithms

AES256, RSA, SHA1, SHA256

We use what's best supported and known

Not much choice if you want to be cross-platform
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Encrypted transfer service

Encrypted transfer service

Sources: https://github.com/pcloudcom/pcltransfer/

see root/js/jscommon/1540.pcrypt.js, doc/specs.txt

Service: https://transfer.pcloud.com/
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What does this service do, user's POV

Give it a password, your email, some other people's mails, �les

Encrypts, uploads the �les, sends an email to the recipients
with a link

with an optional message

The recipients open the link, give the password and can get
the �les.

(probably) even journalists can use it
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How is this done - prereq

All in JavaScript

Browsers SUCK

Using the Stanford JavaScript Crypto Library

AES256-GCM
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AES-GCM

Wonderful construction

Requires no padding

AES in counter mode, with authentication data, e.g.

while (!eof) {

offset++;

CT=encrypt_with_key(IV+offset);

out[offset]=input[offset] ^ CT;

}

out[offset+1]=generate_auth_data();
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Before everything else..

Generate a salt

We'll be seeing a lot more of the salts later

Unique, public value

Stored in plaintext

What we do in the transfer:

salt = sjcl.hash.sha1.hash(

'pcloud' + new Date().getTime() +

sjcl.random.randomWords(4) + this.opts.user_email

)
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Key derivation

PBKDF2 with HMAC-SHA1, 16384 times, the generated salt,
for 256bit key

Password-based key derivation function

Results in a key we can use

The same password with a di�erent salt results in a di�erent
key

Takes ~100ms to generate, helps against brute-force attacks

These are user-selected passwords, which aren't very secure
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Encrypting a message

Very simple - AES256-GCM with IV=SALT
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Encrypting a �lename

IV is uint32_t[4];

memcpy(IV, SALT, 96 bits);

The last 32 bits are used as block counter for the GCM

IV[0] �= (�leno*2);

all the �les are numbered, from 1 to N

AES-GCM with IV
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Encypting a �le

IV is uint32_t[4];

memcpy(IV, SALT, 96 bits);

The last 32 bits are used as block counter for the GCM

IV[0] �= (�leno*2 + 1);

all the �les are numbered, from 1 to N

For each 1MB block B in (0..N) , do

IV[1] �= B

AES-GCM with IV
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Why is it done like this

Salting:

We shouldn't leak if two �les look the same

We shouldn't leak if two �lenames look the same

or are the same

1MB �le split

Trade-o� because of the ways browsers work

AES-GCM

Requires no padding

Gives an authentication if the �le is corrupt

Weird XORs

a way to guarantee di�erence in IVs
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Peer-to-peer protocol

Peer-to-peer protocol

Sources at https://github.com/pcloudcom/pclsync

pp2p.c
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Why a peer-to-peer protocol?

A way to copy �les directly between users

Both sides are untrusted

The network is easy to listen to
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What we have beforehand

SHA1 and size of the �le we need to get

an RSA keypair

Regenerated periodically
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Asking if someone has a �le

We cannot just ask/reply for a speci�c checksum, it's a leak

psync_p2p_check_download()

Check query consists of:

�rst 3 bytes of FILESHA1=sha1() of the �le

�le size

some random RND1

sha1(FILESHA1||RND1)

This is broadcast/multicast in the local network

Only the size of the �le can be found here

and some other practical crypto problems File encryption for untrusted remote �le systems



Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Why
Operation
Rationale

Checking if you actually have the �le

psync_p2p_check(), psync_p2p_has_�le()

For every �le we have with SHA1 that starts with those 3
bytes, check if the size and the otner sha1() match.

If we �nd it, we bind() to a socket and reply with

port

some random RND2

sha1(FILESHA1||RND2)

The second sha1 is just proof that we have the �le

YES, we do check if RND1!=RND2 :)

This looks like a good place to try MITM. . .
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Requesting access to the �le

The requester asks the central service for an authentication
token to be able to access the �le, with its RSA key

psync_p2p_get_download_token()

This is the actual proof that we're allowed to have it

The token contains a signature of the RSA key

This is how we �ght MITM
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Passing the �le

Then, on a TCP connection to the port of the responder, the
following is sent:

RSA public key

token

�rst 3 bytes of FILESHA1=sha1() of the �le

RND2

sha1(FILESHA1||RND2)

The responder veri�es the token with the API, and if it's OK
for this key sends back (in psync_p2p_tcphandler() ):

Encrypted with the public RSA key, an AES256 key and IV

The �le, encrypted with AES256-CTR with the key and IV

We have and check the SHA1 for the �le
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Rationale

We don't give away any information

We make sure you can't �steal� �les

We consider the drawback of having to ask the central service
for tokens and token validations acceptable

Trade-o� - one RTT against having PKI

Leak - if you have the SHA1 of the �le you can see if anyone
has it

All clients have an option to disable it
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Encrypted �le storage

Encrypted �le storage

FUSE fs on top of a remote �le/object storage (�cloud�)
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Encrypted �le storage

Sources again at https://github.com/pcloudcom/pclsync

mainly pcrypto.c

not as scary as it looks, although:

static int memcmp_const(const unsigned char *s1,

const unsigned char *s2, size_t cnt)

{

size_t i;

uint32_t r;

r=0;

for (i=0; i<cnt; i++)

r|=s1[i]^s2[i];

return (((r-1)>>8)&1)^1;

}
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. . . or, if you like puzzles

spot the error: (pcypto.c:420)

revsize=0;

for (i=0; i<3; i++){

b=!!((revisionid>>(i*8))&0xff);

revsize=(revsize&(b-1))+b*(i+1);

}
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Why not just AES-GCM again?

P1⊕ P2 = encrypt(P1)⊕ encrypt(P2)

e.g. it leaks like a sieve

Susceptible to replay attacks (pieces of old �le in the new one)
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Why not IEEE P1619 or similar?

When using transparent encryption, one must therefore

address these vulnerabilities by means outside the scope

of this standard.

IEEE Std 1619-2007 on tra�c analysis, replay attacks, and sector
randomization

This audit �nds that EncFS is not up to speed with

modern cryptography practices.

https://defuse.ca/audits/encfs.htm (EncFS audit)
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Key storage

One RSA keypair per user

The user encrypts the private key with a passphrase and stores
it with us

This is a trade-o�, to make it possible to use it on more devices

Not strictly required
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For each �le and directory. . .

we keep

256bit key

128bit IV

all encrypted with the public RSA key of the user
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File encryption

The �le is split in 4096-byte �sectors�

Each sector is encrypted with AES256-CBC, with
IV=authentication block for that sector

Should be in psync_crypto_aes256_encode_sector() and
psync_crypto_aes256_decode_sector(), still un�nished
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File authentication

�authentication block�

128 bits (AES256 block size)

Consists of HMAC_SHA1 and a revision number

written in a weird way

HMAC_SHA1(DATA||sector_id||revision), with
secret=per-�le IV

The �revision� is needed so if you encrypt A, B and then A, it
doesn't leak.

For every 256 sectors, one sector (4096 bytes) with auth data
is stored, encrypted with AES256-ECB

This doesn't leak, as there can't be two such sectors which are
the same

and some other practical crypto problems File encryption for untrusted remote �le systems



Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Encrypted �le storage
Basics
File encryption & authentication
Filename encryption

File authentication - hash tree

How to ensure the integrity of the whole �le

e�ciently?

Hash tree!

For every sector of auth data, there's one auth block =
HMAC_SHA1(DATA) with secret=per-�le IV

See picture
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Hash tree
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E�ciency of the hash tree

One read() needs log256(�le_size/4096)+1 reads

and those blocks will be cached already

One write() requires log256(�le_size/4096)+1 reads and writes

Better that rewriting the whole �le

We have full �le integrity
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Challenges

No leakage

. . . but the same �le in the same directory must have the
same name

to prevent collisions
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Keys, functions

again, we have a per-directory key and IV

see psync_crypto_aes256_encode_text() and
psync_crypto_aes256_decode_text()
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Filename encryption explained, 1/2

If the �lename is < AES256_BLOCK_SIZE (128bit),
AES256-ECB
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Filename encryption explained, 2/2

calculate HMAC_SHA1(data_after_�rst_block, dir_IV)

XOR the �rst block with the HMAC

do AES256-CBC on the whole thing with the dir_IV)
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Filename decryption

do AES256-CBC on the �lename with the key and IV

calculate HMAC_SHA1(data_after_�rst_block, dir_IV)

XOR the �rst block with the HMAC
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Why do all this complicated crap?

Two �les in the same directory have the same encrypted name

Two blocks in a �lename that are the same are not the same
in the encrypted name

A repeating �rst block of the �lename will not be the same in
the encrypted name
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Stu� we haven't done yet

Integrity of the whole tree and �les

Providing other people's public keys (while sharing �les)
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Conclusion

Tons of caveats and problems

It's not easy to design something that you can't break

It's probably impossible to design something others can't break

(please, please break this one)
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Questions?

Any questions?
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Thank you!

Thank you for listening

or not snoring too loud :)
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