
Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

File encryption for untrusted remote �le
systems

and some other practical crypto problems

Vasil Kolev <vasil@ludost.net>

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Cryptography
Who are we

Cryptography

The function of cryptographic protocols is to minimize

the amount of trust required.

Ferguson, Schneier, Kohno, �Cryptography Engineering�

This talk will be as applied as possible

i.e. almost no maths involved

but a lot of worse stu�

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Cryptography
Who are we

What you need to know to understand this

What are AES, RSA, SHA1

What is a block-cipher mode

ECB, Counter mode, GCM, CBC

Initialization vector (IV)

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Cryptography
Who are we

Who are we

pCloud

cloud storage done right

yadda, yadda, yadda

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Cryptography
Who are we

Trust?

Eastern-European company with servers in the USA

We don't like the idea to be trusted

We shouldn't be

But we want to be used :)

Requiring too much trust is detrimental in the long run

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Cryptography
Who are we

Contents of this talk

Encrypted web-based �le transfer service

Peer-to-peer protocol

Filesystem-level encryption

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Cryptography
Who are we

A note on cyphers/algorithms

AES256, RSA, SHA1, SHA256

We use what's best supported and known

Not much choice if you want to be cross-platform

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Description
Operation
Rationale

Encrypted transfer service

Encrypted transfer service

Sources: https://github.com/pcloudcom/pcltransfer/

see root/js/jscommon/1540.pcrypt.js, doc/specs.txt

Service: https://transfer.pcloud.com/

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Description
Operation
Rationale

What does this service do, user's POV

Give it a password, your email, some other people's mails, �les

Encrypts, uploads the �les, sends an email to the recipients
with a link

with an optional message

The recipients open the link, give the password and can get
the �les.

(probably) even journalists can use it

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Description
Operation
Rationale

How is this done - prereq

All in JavaScript

Browsers SUCK

Using the Stanford JavaScript Crypto Library

AES256-GCM

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Description
Operation
Rationale

AES-GCM

Wonderful construction

Requires no padding

AES in counter mode, with authentication data, e.g.

while (!eof) {

offset++;

CT=encrypt_with_key(IV+offset);

out[offset]=input[offset] ^ CT;

}

out[offset+1]=generate_auth_data();

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Description
Operation
Rationale

Before everything else..

Generate a salt

We'll be seeing a lot more of the salts later

Unique, public value

Stored in plaintext

What we do in the transfer:

salt = sjcl.hash.sha1.hash(

'pcloud' + new Date().getTime() +

sjcl.random.randomWords(4) + this.opts.user_email

)

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Description
Operation
Rationale

Key derivation

PBKDF2 with HMAC-SHA1, 16384 times, the generated salt,
for 256bit key

Password-based key derivation function

Results in a key we can use

The same password with a di�erent salt results in a di�erent
key

Takes ~100ms to generate, helps against brute-force attacks

These are user-selected passwords, which aren't very secure

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Description
Operation
Rationale

Encrypting a message

Very simple - AES256-GCM with IV=SALT

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Description
Operation
Rationale

Encrypting a �lename

IV is uint32_t[4];

memcpy(IV, SALT, 96 bits);

The last 32 bits are used as block counter for the GCM

IV[0] �= (�leno*2);

all the �les are numbered, from 1 to N

AES-GCM with IV

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Description
Operation
Rationale

Encypting a �le

IV is uint32_t[4];

memcpy(IV, SALT, 96 bits);

The last 32 bits are used as block counter for the GCM

IV[0] �= (�leno*2 + 1);

all the �les are numbered, from 1 to N

For each 1MB block B in (0..N) , do

IV[1] �= B

AES-GCM with IV

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Description
Operation
Rationale

Why is it done like this

Salting:

We shouldn't leak if two �les look the same

We shouldn't leak if two �lenames look the same

or are the same

1MB �le split

Trade-o� because of the ways browsers work

AES-GCM

Requires no padding

Gives an authentication if the �le is corrupt

Weird XORs

a way to guarantee di�erence in IVs

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Why
Operation
Rationale

Peer-to-peer protocol

Peer-to-peer protocol

Sources at https://github.com/pcloudcom/pclsync

pp2p.c

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Why
Operation
Rationale

Why a peer-to-peer protocol?

A way to copy �les directly between users

Both sides are untrusted

The network is easy to listen to

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Why
Operation
Rationale

What we have beforehand

SHA1 and size of the �le we need to get

an RSA keypair

Regenerated periodically

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Why
Operation
Rationale

Asking if someone has a �le

We cannot just ask/reply for a speci�c checksum, it's a leak

psync_p2p_check_download()

Check query consists of:

�rst 3 bytes of FILESHA1=sha1() of the �le

�le size

some random RND1

sha1(FILESHA1||RND1)

This is broadcast/multicast in the local network

Only the size of the �le can be found here

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Why
Operation
Rationale

Checking if you actually have the �le

psync_p2p_check(), psync_p2p_has_�le()

For every �le we have with SHA1 that starts with those 3
bytes, check if the size and the otner sha1() match.

If we �nd it, we bind() to a socket and reply with

port

some random RND2

sha1(FILESHA1||RND2)

The second sha1 is just proof that we have the �le

YES, we do check if RND1!=RND2 :)

This looks like a good place to try MITM. . .

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Why
Operation
Rationale

Requesting access to the �le

The requester asks the central service for an authentication
token to be able to access the �le, with its RSA key

psync_p2p_get_download_token()

This is the actual proof that we're allowed to have it

The token contains a signature of the RSA key

This is how we �ght MITM

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Why
Operation
Rationale

Passing the �le

Then, on a TCP connection to the port of the responder, the
following is sent:

RSA public key

token

�rst 3 bytes of FILESHA1=sha1() of the �le

RND2

sha1(FILESHA1||RND2)

The responder veri�es the token with the API, and if it's OK
for this key sends back (in psync_p2p_tcphandler()):

Encrypted with the public RSA key, an AES256 key and IV

The �le, encrypted with AES256-CTR with the key and IV

We have and check the SHA1 for the �le

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Why
Operation
Rationale

Rationale

We don't give away any information

We make sure you can't �steal� �les

We consider the drawback of having to ask the central service
for tokens and token validations acceptable

Trade-o� - one RTT against having PKI

Leak - if you have the SHA1 of the �le you can see if anyone
has it

All clients have an option to disable it

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Encrypted �le storage
Basics
File encryption & authentication
Filename encryption

Encrypted �le storage

Encrypted �le storage

FUSE fs on top of a remote �le/object storage (�cloud�)

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Encrypted �le storage
Basics
File encryption & authentication
Filename encryption

Encrypted �le storage

Sources again at https://github.com/pcloudcom/pclsync

mainly pcrypto.c

not as scary as it looks, although:

static int memcmp_const(const unsigned char *s1,

const unsigned char *s2, size_t cnt)

{

size_t i;

uint32_t r;

r=0;

for (i=0; i<cnt; i++)

r|=s1[i]^s2[i];

return (((r-1)>>8)&1)^1;

}

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Encrypted �le storage
Basics
File encryption & authentication
Filename encryption

. . . or, if you like puzzles

spot the error: (pcypto.c:420)

revsize=0;

for (i=0; i<3; i++){

b=!!((revisionid>>(i*8))&0xff);

revsize=(revsize&(b-1))+b*(i+1);

}

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Encrypted �le storage
Basics
File encryption & authentication
Filename encryption

Why not just AES-GCM again?

P1⊕ P2 = encrypt(P1)⊕ encrypt(P2)

e.g. it leaks like a sieve

Susceptible to replay attacks (pieces of old �le in the new one)

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Encrypted �le storage
Basics
File encryption & authentication
Filename encryption

Why not IEEE P1619 or similar?

When using transparent encryption, one must therefore

address these vulnerabilities by means outside the scope

of this standard.

IEEE Std 1619-2007 on tra�c analysis, replay attacks, and sector
randomization

This audit �nds that EncFS is not up to speed with

modern cryptography practices.

https://defuse.ca/audits/encfs.htm (EncFS audit)

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Encrypted �le storage
Basics
File encryption & authentication
Filename encryption

Key storage

One RSA keypair per user

The user encrypts the private key with a passphrase and stores
it with us

This is a trade-o�, to make it possible to use it on more devices

Not strictly required

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Encrypted �le storage
Basics
File encryption & authentication
Filename encryption

For each �le and directory. . .

we keep

256bit key

128bit IV

all encrypted with the public RSA key of the user

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Encrypted �le storage
Basics
File encryption & authentication
Filename encryption

File encryption

The �le is split in 4096-byte �sectors�

Each sector is encrypted with AES256-CBC, with
IV=authentication block for that sector

Should be in psync_crypto_aes256_encode_sector() and
psync_crypto_aes256_decode_sector(), still un�nished

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Encrypted �le storage
Basics
File encryption & authentication
Filename encryption

Encrypted �le

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Encrypted �le storage
Basics
File encryption & authentication
Filename encryption

File authentication

�authentication block�

128 bits (AES256 block size)

Consists of HMAC_SHA1 and a revision number

written in a weird way

HMAC_SHA1(DATA||sector_id||revision), with
secret=per-�le IV

The �revision� is needed so if you encrypt A, B and then A, it
doesn't leak.

For every 256 sectors, one sector (4096 bytes) with auth data
is stored, encrypted with AES256-ECB

This doesn't leak, as there can't be two such sectors which are
the same

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Encrypted �le storage
Basics
File encryption & authentication
Filename encryption

File authentication - hash tree

How to ensure the integrity of the whole �le

e�ciently?

Hash tree!

For every sector of auth data, there's one auth block =
HMAC_SHA1(DATA) with secret=per-�le IV

See picture

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Encrypted �le storage
Basics
File encryption & authentication
Filename encryption

Hash tree

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Encrypted �le storage
Basics
File encryption & authentication
Filename encryption

E�ciency of the hash tree

One read() needs log256(�le_size/4096)+1 reads

and those blocks will be cached already

One write() requires log256(�le_size/4096)+1 reads and writes

Better that rewriting the whole �le

We have full �le integrity

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Encrypted �le storage
Basics
File encryption & authentication
Filename encryption

Challenges

No leakage

. . . but the same �le in the same directory must have the
same name

to prevent collisions

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Encrypted �le storage
Basics
File encryption & authentication
Filename encryption

Keys, functions

again, we have a per-directory key and IV

see psync_crypto_aes256_encode_text() and
psync_crypto_aes256_decode_text()

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Encrypted �le storage
Basics
File encryption & authentication
Filename encryption

Filename encryption explained, 1/2

If the �lename is < AES256_BLOCK_SIZE (128bit),
AES256-ECB

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Encrypted �le storage
Basics
File encryption & authentication
Filename encryption

Filename encryption explained, 2/2

calculate HMAC_SHA1(data_after_�rst_block, dir_IV)

XOR the �rst block with the HMAC

do AES256-CBC on the whole thing with the dir_IV)

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Encrypted �le storage
Basics
File encryption & authentication
Filename encryption

Filename decryption

do AES256-CBC on the �lename with the key and IV

calculate HMAC_SHA1(data_after_�rst_block, dir_IV)

XOR the �rst block with the HMAC

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Encrypted �le storage
Basics
File encryption & authentication
Filename encryption

Why do all this complicated crap?

Two �les in the same directory have the same encrypted name

Two blocks in a �lename that are the same are not the same
in the encrypted name

A repeating �rst block of the �lename will not be the same in
the encrypted name

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Concussion

Stu� we haven't done yet

Integrity of the whole tree and �les

Providing other people's public keys (while sharing �les)

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Concussion

Conclusion

Tons of caveats and problems

It's not easy to design something that you can't break

It's probably impossible to design something others can't break

(please, please break this one)

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Concussion

Questions?

Any questions?

and some other practical crypto problems File encryption for untrusted remote �le systems

Who, what, why
Encrypted transfer service

Peer-to-peer protocol
Encrypted �le storage

Conclusion

Concussion

Thank you!

Thank you for listening

or not snoring too loud :)

and some other practical crypto problems File encryption for untrusted remote �le systems

	Who, what, why
	Cryptography
	Who are we

	Encrypted transfer service
	Description
	Operation
	Rationale

	Peer-to-peer protocol
	Why
	Operation
	Rationale

	Encrypted file storage
	Encrypted file storage
	Basics
	File encryption & authentication
	Filename encryption

	Conclusion
	Concussion

